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Abstract
Aim: Understanding how climate affects species distributions remains a major chal-
lenge, with the relative importance of direct physiological effects versus biotic interac-
tions still poorly understood. We focus on three species of resource specialists 
(crossbill Loxia finches) to assess the role of climate in determining the seasonal avail-
ability of their food, the importance of climate and the occurrence of their food plants 
for explaining their current distributions, and to predict changes in their distributions 
under future climate change scenarios.
Location: Europe.
Methods: We used datasets on the timing of seed fall in European Scots pine Pinus 
sylvestris forests (where different crossbill species occur) to estimate seed fall phenol-
ogy and climate data to determine its influence on spatial and temporal variation in the 
timing of seed fall to provide a link between climate and seed scarcity for crossbills. 
We used large-scale datasets on crossbill distribution, cover of the conifers relied on 
by the three crossbill species and climate variables associated with timing of seed fall, 
to assess their relative importance for predicting crossbill distributions. We used spe-
cies distribution modelling to predict changes in their distributions under climate 
change projections for 2070.
Results: We found that seed fall occurred 1.5–2 months earlier in southern Europe 
than in Sweden and Scotland and was associated with variation in spring maximum 
temperatures and precipitation. These climate variables and area covered with coni-
fers relied on by the crossbills explained much of their observed distributions. 
Projections under global change scenarios revealed reductions in potential crossbill 
distributions, especially for parrot crossbills.
Main conclusions: Ranges of resource specialists are directly influenced by the pres-
ence of their food plants, with climate conditions further affecting resource availability 
and the window of food scarcity indirectly. Future distributions will be determined by 
tree responses to changing climatic conditions and the impact of climate on seed fall 
phenology.

K E Y W O R D S

biotic interactions, European crossbills, food plants, global change, Loxia, range shift, species 
distribution

www.wileyonlinelibrary.com/journal/ddi
http://orcid.org/0000-0002-1137-2411
mailto:eduardo.mezquida@uam.es


474  |     MEZQUIDA et al.

1  | INTRODUCTION

Understanding the factors influencing species’ distributions is a core 
challenge of ecology and biogeography (Gaston & Blackburn, 2000; 
Sexton, McIntyre, Angert, & Rice, 2009). Climate has been recognized 
as one of the main determinants of species’ ranges (Huntley, Berry, 
Cramer, & McDonald, 1995; Pearson & Dawson, 2003; Pither, 2003), 
with species’ ranges contracting and expanding in response to past and 
recent climate change (Davis & Shaw, 2001; Parmesan, 2006; Svenning, 
Normand, & Kageyama, 2008; Walther et al., 2002). However, other 
factors than climate influence species’ distributions (Guisan & Thuiller, 
2005; Pacifici et al., 2015; Wisz et al., 2013). For example, historical 
contingencies and dispersal abilities can shape distributions and the 
extent to which potential ranges are occupied, with important implica-
tions for predicting future distributions (Svenning & Skov, 2004, 2007). 
Biotic interactions also affect species’ distributions (Sexton et al., 2009). 
However, biotic interactions are dynamic in space and time, interact 
in complex ways with climate (Gilman, Urban, Tewksbury, Gilchrist, & 
Holt, 2010; Tylianakis, Didham, Bascompte, & Wardle, 2008) and thus 
pose challenges for predicting species responses to global change 
(Kissling et al., 2012; Wisz et al., 2013). Resource specialists present 
a unique opportunity to understand the factors affecting distributions, 
given that they have a simpler and more tractable feeding ecology than 
other systems (Araújo & Luoto, 2007; Huntley, 1995; Kissling, Rahbek, 
& Böhning-Gaese, 2007; Koenig & Haydock, 1999; Li et al., 2015; Wisz 
et al., 2013). This is especially true when resource specialists have well-
characterized natural histories, such that linking population dynamics 
and, for example, resource phenology is possible.

Here, we assess the role of climate in determining the seasonal avail-
ability of food for European crossbills (Loxia spp.), and the importance of 
climate and the occurrence of their food plants for explaining crossbill 
distributions. Crossbills are medium-sized finches specialized for feeding 
on seeds in conifer cones (Benkman, 1993, 2003; Newton, 1972), with 
crossed mandibles essential for accessing seeds (Benkman & Lindholm, 
1991). Experimental studies reveal that the different species and eco-
types of crossbills in North America each specialize on conifers that hold 
seeds in their cones reliably, especially from late winter to summer when 
the next seed crop develops (Benkman, 1987, 1993, 2003).

Three closely related crossbill species occur regularly in Europe: 
common crossbill (L. curvirostra), parrot crossbill (L. pytyopsittacus) 

and Scottish crossbill (L. scotica; Newton, 1972; Cramp & Perrins, 
1994). Common crossbills are widely distributed, occupying Russia, 
Fennoscandia, the British Isles and parts of central and Mediterranean 
Europe, feeding mostly on Norway spruce (Picea abies) in the north and 
multiple species of pine including Scots pine Pinus sylvestris, P. halepen-
sis, P. mugo, P. nigra and P. uncinata in the south (Benkman & Mezquida, 
2015; Cramp & Perrins, 1994; Newton, 1972). Parrot crossbills occur 
mainly from Russia west of the Urals to Scandinavia (Cramp & Perrins, 
1994) and have an especially deep bill for foraging on the hard cones 
of Scots pine (Newton, 1972; Summers, Dawson, & Proctor, 2010). 
Scottish crossbills are a narrow-range endemic species restricted to 
Scotland where it is believed to have evolved since the last glaciation 
(Knox, 1990; Nethersole-Thompson, 1975). Even though their bill is 
intermediate in size between parrot and common crossbills, Scottish 
crossbills also are thought to be adapted for foraging on the cones of 
Scots pine (Knox, 1990; Nethersole-Thompson, 1975), the only co-
nifer available to crossbills in Scotland until the last 100–200 years 
when multiple non-native conifer species were planted extensively 
(Marquiss & Rae, 2002; Summers et al., 2010).

Although crossbills forage on Scots pine throughout Europe, cross-
bills specialized for foraging on Scots pine (i.e., parrot and Scottish 
crossbills) are confined to mostly northern Europe and Scotland, rep-
resenting less than one-sixth of the geographic range of Scots pine 
(Knox, 1990; Newton, 1972). Seeds in developing Scots pine cones 
become profitable to crossbills by August (Figure 1; Marquiss & Rae, 
2002). The cones mature in autumn, and large-billed crossbills in par-
ticular continue foraging on seeds in the closed cones through win-
ter (Marquiss & Rae, 2002). By April, cones begin to open and shed 
seeds (Summers et al., 2010). Although seeds in open cones are more 
accessible than in closed cones, the availability of seeds to crossbills 
declines as seeds are shed (Figure 1; Benkman, 1987; Summers et al., 
2010), with crossbills rarely foraging on seeds that have fallen to the 
ground (Marquiss & Rae, 2002). The window of time between when 
most of the seeds have been shed and the next cone crop becomes 
profitable to crossbills is potentially the period of greatest food lim-
itation (Figure 1; Benkman, 1993; Summers et al., 2010). Because 
cone scales spread apart, releasing the seeds from their base, in re-
sponse to dry conditions and high temperatures (Dawson, Vincent, & 
Rocca, 1997), a hypothesis for the northern distribution of “Scots pine” 
crossbills is that they are restricted to cooler climates because such 

F IGURE  1 Seasonal patterns of seed 
availability for crossbills foraging on Scots 
pine cones. The period of greatest food 
scarcity occurs between the shedding of 
seeds in May–July and the maturation 
of the next seed crop in August. When 
conditions are hotter and drier, seeds 
are shed more rapidly and the window 
of food scarcity increases. The necessary 
seed intake rate for survival is shown as a 
horizontal line, although it varies seasonally 
with time available for foraging and daily 
energy demands
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conditions result in seeds being more reliably held in cones until a new 
cone crop becomes available in late summer (Figure 1).

Warmer conditions in the south are likely to cause Scots pine cones 
to open earlier (see Castro, Gómez, García, Zamora, & Hódar, 1999 
for southern Spain where seed shedding begins in February) and shed 
their seeds more rapidly resulting in long periods of seed scarcity. 
Consistent with this hypothesis, the relatively small-billed common 
crossbills feeding on Scots pine in the Mediterranean regularly disperse 
during late spring (after pine seed dispersal) and summer to search for 
alternative seed sources until a new crop develops (Arizaga, Alonso, 
& Edelaar, 2015; E. T. Mezquida, pers. obs.). Similarly, rapid release of 
Scots pine seeds following a warm spell in April caused an exodus of 
common crossbills nesting in the Netherlands (Bijlsma, De Roder, & van 
Beusekom, 1988). If the window of seed scarcity in Scots pine increased 
in northern Europe in response to climate change, the massive-billed 
parrot crossbill might shift to feeding on seeds in Norway spruce, the 
one other co-occurring conifer in much of the parrot crossbill’s range. 
However, Norway spruce, which already tends to shed its seeds in the 
spring earlier than does Scots pine (Newton, 1972), would probably 
also shed its seeds more rapidly. Moreover, the smaller billed common 
crossbill, which in northern Europe is adapted for foraging on Norway 
spruce (Newton, 1972), would likely outcompete the parrot crossbill 
for spruce seeds. Although crossbills may use alternative food re-
sources when conifer seeds are scarce (Cramp & Perrins, 1994), cross-
bills are inefficient compared to other seed-eating birds at handling 
non-conifer seeds, and it is doubtful crossbills can persist for long by 
foraging on these alternative foods (Benkman, 1988).

We used datasets on the timing of seed fall in the Iberian Peninsula 
(only common crossbills occur), Scotland (where the Scottish crossbill 
was the only resident crossbill species until recently) and Sweden (par-
rot and common crossbills occur) to estimate the phenology of seed fall 
in Scots pine. We predicted that seed fall would occur earlier at lower 
latitudes (i.e., Iberian Peninsula). Second, we address the hypothesis 
that climate influences spatial and temporal variation in the timing 
of seed fall to provide a link between climate and seed scarcity for 
crossbills. Third, we assess the relative importance of climate variables 
associated with timing of seed fall and the cover of the main conifers 
relied on by each crossbill species, for predicting their distributions. If 
the climate variables related to delayed seed fall account for crossbill 
distributions, then this would support the hypothesis that longer seed 
retention is critical for crossbills to specialize on Scots pine, as well as 
other conifers (Benkman, 1993).

Finally, we use species distribution modelling to predict changes 
in the potential distributions of crossbills under future climate change 
scenarios. If future climate change hastens seed fall, it will likely neg-
atively impact crossbills (Benkman, 2016). Indeed, an 80% decline in 
population size over 8 years in a resident crossbill (Cassia crossbill 
L. sinesciurus) in North America coincided with a reduction in annual 
survival in apparent response to premature releases of seeds following 
an increase in hot (≥32°C) summer days (Benkman, 2016; Santisteban, 
Benkman, Fetz, & Smith, 2012). Thus, climate-related factors that in-
fluence the availability of food resources may negatively impact the 
persistence of crossbill populations.

2  | METHODS

2.1 | Geographical and temporal variation in seed fall

We measured Scots pine seed fall at a total of four sites in two differ-
ent regions in the Iberian System mountain range, Spain. One region 
was in Teruel Province at the south-eastern limit of the Iberian System, 
with sites in Valdelinares and Fortanete (40°23′N, 0°36′W). The other 
was in Soria Province at the north-western limit of the Iberian System, 
with sites in Duruelo de la Sierra and near Santa Inés mountain pass 
(42°00′N, 2°50′W). At each site, we systematically selected 15 trees 
every 30–60 m along 1 km transects and placed one trap to collect 
falling seeds under each tree. Seed traps consisted of aluminium trays 
placed on the ground with a catch area of 0.15 m2 and covered with 
1.3-cm wire mesh to prevent seed removal by birds and mammals. 
Each year, traps were set up during February, and seeds were col-
lected every 17–20 days until early July. Seed fall was recorded over 
3 years (2010–2012).

We used seed fall data from Scots pine at Abernethy Forest, 
Scotland. Timing of seed fall in this forest has been previously de-
scribed using part of this dataset (Summers, 2011; Summers & Proctor, 
2005). Methods followed are those described in that study. In short, 
four sites were selected at Abernethy Forest (57°15′N, 3°40′W), three 
in stands of ancient native pinewood (Ice Wood, Memorial Wood, and 
Bognacruie) and one area of plantation woodland, grown from seeds 
of local provenance (Tore Hill). Five seed traps were located equidis-
tantly under trees along 1–2 km transects set through each site. Seed 
traps were plastic pots with a catch area of 0.13 m2. Traps were set up 
in February, and seeds were collected at the end of each month until 
September. Seed fall was recorded for 16 seed years (1992–2007).

We used published information for two sites in central Sweden 
(Hannerz, Almqvist, & Hornfeldt, 2002) to characterize the timing of 
Scots pine seed fall in Scandinavia. Hannerz et al. (2002) recorded 
seed fall for 4 years (1993–1996) at Garpenberg (60°16′N, 16°11′E), 
using three plastic trays with a catch area of 0.14 m2 placed on the 
ground, 50-m apart. Traps were set up in early March, and seeds were 
collected on eight occasions until late July or early August. Seed fall 
was recorded for 3 years (1996, 1997, and 1999) at Knivsta (59°43′N, 
17°49′E). At this site, seed traps consisted of circular bag nets with a 
catch area of 0.25 m2 placed about 1 m above the ground. Ten traps 
were set up in late March, with an average distance of 10 m between 
traps, and seeds were collected on 10–14 occasions until July.

To estimate the timing of seed dispersal, we followed similar cal-
culations to those made by Hannerz et al. (2002). We counted the 
number of Scots pine seeds per seed trap at each collection date and 
calculated the number of seeds per square metre. Dates were trans-
formed into Julian days (1 = 1 January), taking into account leap years, 
in which we added 1 day after February 28. We included seed fall data 
from March to late July. February was excluded from calculations be-
cause seed fall data were not gathered for February in some years in 
Scotland, and when measured in February, no seeds were trapped in 
nearly all of the years. We calculated the cumulative proportion of the 
total seed fall for every collection date at each site and used these 
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values to fit a logistic function for each year and site. Models were 
fitted using nonlinear least squares estimation in statistica (Statsoft, 
Inc., Tulsa, OK, USA). Regression coefficients were used to estimate 
the days when 10%, 50% and 90% of the seed fall occurred (D10, D50, 
D90, hereafter) (see Appendix S1).

For each year and site, we determined the monthly mean, max-
imum and minimum temperatures, and monthly precipitation using 
the European daily high-resolution gridded climate dataset (0.25° grid 
resolution; Haylock et al., 2008) to relate to the timing of seed fall. 
To determine the relationship between climate variables and annual 
variation in timing of seed fall, we used monthly climate variables and 
the estimated D50 for each year and site in Scotland (i.e., the lon-
gest time series dataset). Preliminary correlations indicated that D50 
was consistently correlated with climate variables for March and 
April, and mainly with maximum temperature. We fitted a multiple 
linear regression model between D50, as the response variable, and 
March and April maximum temperatures, and March precipitation as 
the predictor variables. March and April mean and minimum tempera-
tures were not included due to their high correlation with maximum 
temperatures (r > .75, for all correlations), and April precipitation was 
excluded because of its high correlation with April maximum tempera-
ture (r = −.68). Finally, to evaluate whether the same climate variables 
were related to annual variation in seed fall for the three European 
regions, we fitted a linear mixed model between D50 and March and 
April maximum temperatures, and March precipitation, including re-
gion as a random effect (we compared a random intercept model to a 
random intercept and slope model).

2.2 | Modelling observed crossbill distributions

To examine whether observed crossbill distributions are related to 
climate variables that influence the timing of Scots pine seed fall 
and cover of different conifer taxa, we modelled the presence of 
each crossbill species in relation to March and April maximum tem-
peratures as well as cover of Scots pine, spruce (Picea spp.) and 
pines (Pinus spp.) other than Scots pine (hereafter referred to as 
“other pines”). Information on the current distribution of the three 
crossbill species came from the Atlas of European Breeding Birds 
(Hagemeijer & Blair, 1997). Data in this Atlas record the pres-
ence and absence of species breeding in Europe within cells of 
50 × 50 km (Appendix S1).

We used maps of Scots pine, spruce and other pines developed 
by Brus et al. (2012) for European countries excluding Russia and 
Iceland that provide percent cover for each tree species (0%–100%) 
at 1 × 1 km resolution (Brus et al., 2012;). “Other pines” mostly in-
cluded species regularly foraged on by crossbills (P. halepensis, P. mugo, 
P. nigra and P. uncinata), but also some species not used by crossbills 
(e.g., P. cembra, P. pinea; Cramp & Perrins, 1994). Information to map 
species distributions also included plantations. Thus, groups of species 
(spruce and other pines) included, for example, non-native plantations 
in the British Isles comprised mainly of Sitka spruce Picea sitchensis and 
lodgepole pine Pinus contorta (Brus et al., 2012), which are commonly 
utilized by crossbills (Summers & Broome, 2012).

We used monthly mean climate data (~1950–2000) from the 
WorldClim dataset (Hijmans, Cameron, Parra, Jones, & Jarvis, 2005) at 
5′ resolution. We extracted data for monthly maximum, mean and min-
imum temperatures, and precipitation. For each 50 × 50 km grid with 
crossbill presence/absence data, we calculated mean values for maxi-
mum temperatures and percent cover of the different conifer taxa. We 
modelled the distributions using boosted regression trees (BRTs), a ro-
bust algorithm used in species distribution modelling (Elith, Leathwick, & 
Hastie, 2008). We used a binomial error structure and followed recom-
mendations by Elith et al. (2008) for parameter settings (Appendix S1).

We divided the dataset of each crossbill species by selecting 70% of 
the data for model calibration and using the remaining 30% of the data 
to evaluate the predictive performance of the models. To account for 
spatial autocorrelation in the data, we split the data by spatial blocking 
(Roberts et al., 2017), using the “checkerboard1” method in the ENMeval 
package (Muscarella et al., 2014) in R 3.1.2 (R Core Development Team). 
We provide the percentage of variance explained and the area under 
the ROC curve (AUC), estimated on the evaluation datasets (Elith et al., 
2008), as measures of accuracy for the selected models.

We used the best-fitted BRT model for each crossbill species to es-
timate their current potential distribution in Europe (excluding Iceland 
and Russia; as predicted by the models). To compare the observed dis-
tribution of each crossbill species with its potential distribution, we 
also calculated the area where each species is present according to the 
European Atlas (i.e., the area of the grids with presence of each species 
in the Atlas excluding Iceland and Russia). To make both maps more 
comparable, we overlaid a map of Europe on the Atlas grids to exclude 
areas lying outside of land (e.g., sea) and rasterized grids to 5′ resolu-
tion for area calculation. This calculation provides a rough estimate of 
the similarity between the distribution of crossbill species and their 
potential suitable habitat under current climate conditions.

2.3 | Modelling future shifts in crossbill distributions

To forecast shifts in future crossbill distributions, we first modelled 
current potential crossbill distributions across Europe as a baseline for 
comparison. We used the BRT model for each crossbill species using 
March and April maximum temperatures and conifer cover, as above, 
to predict their current potential distribution across Europe (includ-
ing Iceland and Russia). However, we modelled the potential cover of 
each conifer group (which may not currently be present due to his-
torical factors or human influence) instead of using forest cover maps 
so that we could also forecast future distributions. We built models 
with cover of each conifer group as a separate response variable and 
three environmental variables as predictors: growing degree-days 
(GDD), absolute minimum temperature (AMT) and water balance, 
using monthly mean climate data (~1950–2000) from the WorldClim 
dataset (Hijmans et al., 2005) at 5′ resolution (Appendix S1). Because 
cover values were integers including many zeros, we modelled conifer 
cover using BRTs with a Poisson error structure and similar proce-
dures as explained above (Appendix S1).

Predictions from the BRT models for each crossbill species pro-
vided the probability of presence for each grid cell. To select the 
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threshold for converting the continuous logistic probability scale to 
a binary prediction of potential presence or absence, we calculated 
model-specific thresholds that maximized the sum of sensitivity and 
specificity (Jiménez-Valverde & Lobo, 2007). The restricted distribu-
tion of the Scottish crossbill resulted in few presences in the Atlas 
dataset, and this threshold method usually overpredicts the distribu-
tion of species with low prevalence. Thus, we estimated the optimal 
threshold value for this species using the SDMTools package (http://
www.rforge.net/SDMTools/) in R. These thresholds were used for 
each model of current potential crossbill distribution, and in all models 
using future climate projections.

To forecast the future distributions of each crossbill species, we 
used the BRT models built for each species using climate change pro-
jections for 2070 (IPCC Fifth Assessment Report data) at 5′ resolution, 
also available from the WorldClim database. We used the IPCC-CMIP5 
climate projections from three Global Circulation Models (GCMs) 
under two representative concentration pathways (RCP 4.5 and 8.5) 
(Appendix S1). We extracted monthly temperature and precipitation 
values for the six scenarios and computed the same three climate vari-
ables (i.e., GDD, AMT and water balance) as for current conditions. 
First, the distribution for each conifer species was forecasted by cal-
culating the set of three predictor variables (i.e., GGD, AMT and water 
balance) under future conditions and predicting with the BRT models 
fitted for each conifer species. Projections for each conifer species to-
gether with March and April maximum temperatures for each scenario 
were used to forecast potential crossbill distributions (i.e., potential 
suitable habitat for each species under future conditions), as done for 
current conditions. We then calculated the predicted area of distribu-
tion for each crossbill species under each projection. In addition, we 
estimated the area for which projections from the three GCMs for 
each RCP overlapped (i.e., ensemble of predictions), the area where 
any of two predictions overlapped, and the sum of the areas predicted 
by at least one projection. All models were built, evaluated and pro-
jected using the dismo, raster and gbm packages in R (Hijmans, 2014; 
Hijmans, Phillips, Leathwick, & Elith, 2013; Ridgeway, 2013).

3  | RESULTS

3.1 | Geographical and temporal variation in seed fall

The estimated time when 10%, 50% and 90% of the seeds were shed 
(i.e., D10, D50 and D90) was 1.5–2 months earlier in the Iberian 
Peninsula than in Scotland or central Sweden (Figure 2; Appendix S2). 
The average date for D50 across all sites and years in each region was 
25 March in the Iberian Peninsula, 23 May in Scotland and 14 May in 
central Sweden (Figure 2; Appendix S2).

The linear multiple regression indicated that inter-annual varia-
tion in D50 in Scotland was negatively correlated with April maximum 
temperature (coefficient ± SE: −5.29 ± 0.99, p < .001), whereas March 
maximum temperature and precipitation did not have a detectable 
effect (−1.62 ± 1.05, p = .13; 0.07 ± 0.04, p = .11, respectively). The 
model explained 62% of the variation (F3,44 = 23.9, p < .001). The mixed 
model for all three regions including random variation around the in-
tercept provided a better fit than a mixed intercept and slope model 
according to Akaike’s Information Criterion (510.8 vs. 517.9), indicating 
that slopes did not differ among regions. The mixed intercept model 
showed that D50 was negatively associated with April maximum tem-
perature (−4.00 ± 0.59, p < .001; Figure 3) and March maximum tem-
perature (−3.18 ± 0.74, p < .001) and positively associated with March 
precipitation (0.08 ± 0.03, p = .018). Warmer spring temperatures ac-
celerate seed fall and thereby increase the window of food scarcity for 
crossbills before the next seed crop develops (Figure 1).

3.2 | Observed crossbill distributions

The BRT model for parrot crossbills performed well (% deviance ex-
plained: 83.2; AUC: 0.99), the one for common crossbills was less ac-
curate, but still good (% deviance explained: 36.8; AUC: 0.88), with the 
model fit for Scottish crossbills intermediate (% deviance explained: 
69.8; AUC: 0.99). The BRT model for common crossbills indicated 
that spruce cover (relative influence: 42.9%) and April maximum tem-
perature (23.4%) contributed most to explain its observed distribution 

F IGURE  2  Julian day (mean ± SE) 
when 10%, 50% and 90% (D10, D50, 
D90, respectively) of the Scots pine (Pinus 
sylvestris) seeds were released over 3 years 
in four forests in the Iberian Peninsula, 
16 years in four areas in Abernethy Forest 
in Scotland and 3–4 years in two forests in 
central Sweden. Horizontal dashed lines for 
day 80 (March 21) and day 140 (May 20) 
are shown for reference. Forest locations: 
DUR, Duruelo de la Sierra; SAN, Santa 
Inés; VAL, Valdelinares; FOR, Fortanete; 
ICE, Ice Wood; MEM, Memorial Wood; 
BOG, Bognacruie; TOR, Tore Hill; GAR, 
Garpenberg; KNI, Knivsta
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(Figure 4). April maximum temperature (63.0%) was the most impor-
tant variable explaining parrot crossbill occurrence, followed by Scots 
pine cover (25.1%; Figure 4). The BRT model for Scottish crossbill dis-
tribution showed greater relative contributions for cover of other pines 
(49.1%), followed by spruce cover (22.0%) and April maximum temper-
ature (17.3%; Figure 4). All crossbill species were more likely to occur 
where April maximum temperatures were lower (Table 1) and thus 
where seeds were more likely to be retained in the cones in late spring 
and early summer (Figure 3). Each crossbill species was also more likely 
to occur where the conifer on which it specializes was more abundant 
(Norway spruce for common crossbills, Scots pine for parrot cross-
bills; Table 1; Figure 4), or in the case of the Scottish crossbill where 
there were more introduced conifers (spruce and other pines; Table 1; 
Figure 4) that it now currently relies upon (Summers & Broome, 2012).

3.3 | Potential crossbill distributions

The predicted potential distributions for common and parrot crossbills 
were similar (8%–9% difference) to the observed distributions within 
the area included in the European Atlas (Table 2; Figure 5). However, 
the predicted distribution for the Scottish crossbill was around half of 
the area calculated for the Atlas grids (Table 2; Figure 5), which it is 
expected due to the over-estimation of the area calculated at the grid 
resolution of the Atlas (see a detailed survey in Summers & Buckland, 
2011). Extrapolating to all of Europe, the potential distribution of 
common crossbills increased 2.5-fold (Table 2), occupying Iceland 
and most of Russia (Figure 5); the distribution of parrot crossbills in-
creased by 2.6-fold (Table 2), potentially occurring in parts of Iceland 
and the northern part of Russia (Figure 5); and the potential distribu-
tion of Scottish crossbills increased 2.8-fold (Table 2), potentially oc-
cupying Great Britain south of Scotland and scattered areas mainly in 
mountain ranges in the north of the Iberian Peninsula (Figure 5).

3.4 | Future crossbill distributions

Projections for the potential crossbill distributions under future (2070) 
climate change scenarios indicate a reduction in area for all three 
species, particularly for parrot crossbills (Table 2; Figure 6). The dis-
tribution of common crossbills was projected to expand in northern 
Russia, but decline overall by an average of 20% (Table 2) because 
of decreases in southern and central Europe (Figure 6). The future 
distribution for parrot crossbills contracted and shifted northwards in 
northern Fennoscandia and Russia (Figure 6) and declined overall by 
an average of 57% (Table 2). The future distribution for Scottish cross-
bill decreased on average by 18%, although one scenario predicted an 
increase of 6% (Table 2). Future projections predicted suitable areas 
remaining in Scotland, but also more distant areas in Iceland, along the 
Scandinavian coast and south-central Europe (mainly the Alps and the 
Pyrenees; Figure 6), areas the relatively sedentary Scottish crossbill is 
unlikely to colonize.

4  | DISCUSSION

Our results indicate that timing of seed fall for Scots pine in southern 
Europe was 1.5–2 months earlier than in Scotland and Scandinavia, 
where the two “Scots pine” crossbills (Scottish and parrot) occur. 
Higher maximum temperatures during early spring (March–April) co-
incided with earlier seed fall, and maximum temperatures as well as 
precipitation during this period were associated with latitudinal dif-
ferences in seed fall phenology. Consequently, the interval of food 
scarcity—the interval between when seeds are available between 
successive seed crops—for crossbills needing to rely on Scots pine 
seeds (Figure 1) increases dramatically from northern to southern 
Europe and likely accounts for the absence of a “Scots pine” crossbill 
in southern Europe. Further, climate variables related to the reten-
tion of seeds in the cones and to cover of conifers that comprise 

F IGURE  3 Relationship between April maximum temperature 
and date when 50% of the Scots pine seeds were released (D50) for 
67 year/forest combinations in three regions, as predicted by a linear 
mixed model. For reference, day 120 corresponds to April 30. Note 
that some data points overlap

F IGURE  4 Relative influence (contribution) of two climate 
and three conifer cover variables in explaining the observed 
distributions of three crossbill species in Europe. The five predictor 
variables were maximum March temperature (Tmax March), 
maximum April temperature (Tmax April) and cover of Scots pine 
(Pinus sylvestris), spruce (Picea spp.) and other pines (Pinus spp. other 
than P. sylvestris)
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the main food plants for each crossbill species accounted for a sub-
stantial amount of the variation in their observed distributions, sug-
gesting general indirect influences of climate on the distribution of 
crossbills. Climate change scenarios for the end of the century pre-
dict a reduction in the potential distribution of each crossbill species, 
which will be especially great for parrot crossbills whose observed 
distribution was the most strongly associated with cooler April tem-
peratures. Below we discuss further climate effects on the phenol-
ogy of seed fall and the effects of climate change on future crossbill 
distributions.

4.1 | Climate factors influencing the phenology of 
seed fall

Our results are consistent with the important role of (spring) tem-
perature for different phenological events of plants (Cleland, Chuine, 
Menzel, Mooney, & Schwartz, 2007; Gordo & Sanz, 2010; Sparks, 
Jeffree, & Jeffree, 2000). We found that higher spring (April) maxi-
mum temperatures were related to earlier seed fall in Scotland, in 
agreement with previous observations (Hannerz et al., 2002; Worthy, 
Law, & Hulme, 2006) and with the fact that cone scales spread apart, 

TABLE  1 Mean values (SE) for two climate variables and cover of three conifer taxa groups for grids in which the common, parrot or 
Scottish crossbill were present or absent, according to the Atlas of European Breeding Birds. The number of grids in which each crossbill 
species was present or absent is also shown. Pine cover excludes Scots pine

Variables

Common crossbill Parrot crossbill Scottish crossbill

Present Absent Present Absent Present Absent

March maximum temperature (°C) 5.03 (0.14) 9.06 (0.14) 0.14 (0.13) 8.56 (0.10) 6.67 (0.24) 7.16 (0.11)

April maximum temperature (°C) 9.77 (0.12) 14.10 (0.11) 5.36 (0.12) 13.39 (0.08) 8.91 (0.28) 12.08 (0.09)

Scots pine cover (%) 14.11 (0.47) 4.22 (0.20) 29.91 (0.84) 4.69 (0.16) 6.77 (1.34) 8.88 (0.27)

Spruce cover (%) 11.35 (0.36) 1.38 (0.09) 19.12 (0.62) 3.48 (0.16) 8.90 (0.87) 6.05 (0.20)

Pine cover (%) 1.77 (0.16) 2.25 (0.16) 0.35 (0.06) 2.36 (0.13) 4.95 (0.94) 2.01 (0.11)

Number of grids 1,263 1,424 445 2,242 14 2,673

TABLE  2 Current and future distributions (km2) for common, parrot and Scottish crossbills. Observed and potential current distributions are 
calculated for the area covered by the Atlas of European Breeding Birds (not including Iceland and Russia), or extrapolated to all of Europe 
(including Iceland and Russia). The future distributions for 2070 were predicted using two concentration pathways (RCPs) and three Global 
Circulation Models (Appendix S1). The percent reduction in area relative to the European potential distribution is shown in parentheses (plus 
sign indicates increase) for future scenarios including the area predicted by the three scenarios for each RCP

Common crossbill Parrot crossbill Scottish crossbill

Current distributions

Observed (based on Atlas of European Breeding Birds) 3,054,348 1,006,933 30,978

Potential (predicted suitable habitat within the area 
covered by Atlas)

2,770,140 1,088,389 14,592

Potential (predicted suitable area for all of Europe) 7,021,007 2,810,483 40,308

Future distributions in 2070 (RCP 4.5)

CNRM-CM5 6,072,324 (14) 1,460,725 (48) 42,872 (+6)

HadGEM2-ES 5,325,557 (24) 1,096,851 (61) 29,161 (28)

MPI-ESM-LR 6,924,121 (1) 1,791,610 (36) 34,719 (14)

Average RCP 4.5 scenarios 6,107,334 (13) 1,449,729 (48) 35,584 (12)

Predicted by the 3 scenarios 4,922,889 (30) 804,657 (71) 4,040 (90)

Predicted by 2 scenarios 1,194,859 599,078 18,380

Predicted by 1 scenario 1,163,618 737,058 57,872

Future distribution in 2070 (RCP 8.5)

CNRM-CM5 5,457,918 (22) 994,496 (65) 36,754 (9)

HadGEM2-ES 4,197,989 (40) 584,946 (79) 28,041 (30)

MPI-ESM-LR 5,786,787 (18) 1,254,073 (55) 26,111 (35)

Average RCP 8.5 scenarios 5,147,565 (27) 944,505 (66) 30,302 (25)

Predicted by the 3 scenarios 4,013,086 (43) 474,957 (83) 1,721 (96)

Predicted by 2 scenarios 1,196,412 474,523 14,431

Predicted by 1 scenario 1,010,610 459,599 56,881
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releasing the seeds from their base, in response to dry conditions and 
high temperatures (Dawson et al., 1997). Surprisingly, early spring pre-
cipitation was not correlated with the timing of seed fall in Scotland. 
However, higher spring (March) precipitation and lower spring (March 
and April) maximum temperatures were related to delayed seed fall 
across all three regions. Perhaps precipitation was less relevant to seed 
dispersal in Scotland because of its more consistently humid maritime 
climate. Consistently high humidity in Scotland might also account for 
why maximum spring temperatures contributed relatively little to the 
model for the distribution of Scottish crossbills (Figure 4).

4.2 | Climate and food plants as determinants of 
crossbill distributions

Early spring (April) maximum temperature, which best explained the 
timing of Scots pine seed fall, and Scots pine cover contributed most 

to predicting the distribution of parrot crossbills (Figure 4). These 
results were consistent with the occurrence of parrot crossbills de-
pending on Scots pine retaining seeds in its cones in late spring and 
into summer, and with specialization by parrot crossbills on Scots pine 
(Cramp & Perrins, 1994; Newton, 1972). In contrast, the distribution 
of the Scottish crossbill, which presumably evolved in isolated Scots 
pine forests in the British Isles (Knox, 1990; Nethersole-Thompson, 
1975; Summers et al., 2010), was more related to other non-native 
pines and spruce cover than to Scots pine cover. This result is con-
sistent with the now extensive use of introduced pine and spruce by 
Scottish crossbills (Summers & Broome, 2012). However, it is worth 
noting that the restricted distribution of Scottish crossbills and the 
coarse grid resolution of the Atlas data (Summers & Buckland, 2011) 
resulted in few occurrences for model building. As mentioned above, 
the minimal importance of spring temperature on the distribution of 
Scottish crossbills is perhaps related to the relatively humid marine 

F IGURE  5 Observed distributions, 
extracted from the Atlas of European 
Breeding Birds (grid pattern), potential 
distributions (i.e., predicted suitable 
habitat) for the area covered by the Atlas 
excluding Iceland and Russia (orange 
colour, note that the orange colour under 
the grid looks brownish), and predicted 
potential distributions for parts of Europe 
not covered by the Atlas (yellow colour) 
for (a) common, (b) parrot and (c) Scottish 
crossbills. [Colour figure can be viewed at 
wileyonlinelibrary.com]

www.wileyonlinelibrary.com
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climate in Scotland. Spruce cover was the main determinant, and April 
maximum temperature the second-most important determinant of the 
distribution of common crossbills. This crossbill is widely distributed 
in Europe and feeds mainly on spruce in central and northern Europe 
(Cramp & Perrins, 1994; Newton, 1972). The importance of April 
maximum temperature suggests that seed retention in the spring by 
Norway spruce is related to temperature as in Scots pine.

4.3 | Ranges of crossbills under future climates

Climate change scenarios are expected to shift and reduce the distri-
bution of crossbills in Europe, with a dramatic reduction for the species 
most specialized on Scots pine, the parrot crossbill. These reductions 
are the result of at least two factors. First, warming conditions during 
spring are expected to shift the timing of seed fall so as to increase 
the window of food scarcity for crossbills (Figure 1). Although earlier 
cone development in summer with increasing temperatures could act 
to reduce this window of food scarcity, this is an unlikely response 
given that Scots pine cones start to develop and become profitable 

to crossbills at similar times from southern to northern Europe (late 
July-early August; Marquiss & Rae, 2002; Worthy et al., 2006;  
E. T. Mezquida, pers. obs.). Second, climate scenarios predict a north-
eastwards shift in the distributions of the main food plants (pine and 
spruce) for crossbills, as previously predicted for many European for-
est trees (Huntley et al., 1995; Thuiller, 2003). The common crossbill’s 
distribution will contract in the central and southern areas as warmer 
conditions advance seed fall and thereby expand the period of seed 
scarcity, and as conifers suffer increased mortality due to drier condi-
tions at their warm-edge range margins (Matías & Jump, 2012; Reich 
et al., 2015). New areas will potentially become suitable in northern 
Europe allowing northwards expansion. Parrot crossbills will be fur-
ther restricted to perhaps only northern Fennoscandia and Russia. 
This range reduction is the result of future range shifts in Scots pine 
(Huntley, 1995) and the increase in spring temperature causing a 
longer interval of seed scarcity, especially in southern Fennoscandia.

Our predictions for Scottish crossbills are partly similar to those 
from previous simulations (Huntley, Green, Collingham, & Willis, 2007). 
Suitable areas in Scotland are predicted to remain, but additional 

F IGURE  6 Future distributions for 2070 using two concentration pathways (RCPs) and three Global Circulation Models for common, parrot 
and Scottish crossbills. [Colour figure can be viewed at wileyonlinelibrary.com]

www.wileyonlinelibrary.com
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areas are predicted for Iceland, Scandinavia and south-central Europe. 
However, it is doubtful that these small and widely spaced locations 
would be favourable to a relatively sedentary and localized specialist, 
as Scottish crossbills have been characterized (Knox, 1990; Marquiss & 
Rae, 2002; Nethersole-Thompson, 1975). Currently, Scottish crossbills 
often utilize non-native conifers (Summers & Broome, 2012). Although 
the use of these non-native conifers should aid in their short-term per-
sistence, a much smaller billed crossbill similar to those specialized on 
these conifers (e.g., Pinus contorta and Picea sitchensis) in their native 
ranges in North America (Benkman, 1993; Irwin, 2010) will be favoured 
over the long term (Summers & Broome, 2012). In addition, common 
crossbills, which also feed on these non-native conifers in Scotland, 
could co-occur with Scottish crossbills more frequently, potentially in-
creasing both competition and hybridization between this smaller billed 
crossbill and the Scottish crossbill (Marquiss & Rae, 2002; Summers, 
Dawson, & Phillips, 2007). We suspect that the outlook for a unique 
Scots pine specialist in Scotland is even bleaker than that for the parrot 
crossbill in northern Europe.

These forecasted range shifts for crossbills are consistent with 
future predictions for different bird species and diverse local scales 
(Thomas & Lennon, 1999; Tingley, Monahan, Beissinger, & Moritz, 
2009) and with avian responses to changes in vegetation during past 
climates (Holm & Svenning, 2014). Our results suggest that climate 
change will impact European crossbills in an indirect way through 
their influence on the distribution of their food plants (Huntley, 1995; 
Kissling, Field, & Böhning-Gaese, 2008), timing of seed fall and seed 
availability (Benkman, 2016; Santisteban et al., 2012), and possibly 
seed production (Matías & Jump, 2012). This is consistent with in-
creasing evidence that climate change has and will have its greatest 
impact by altering food resources and trophic interactions (Cahill et al., 
2013; Ockendon et al., 2014; Pearce-Higgins & Green, 2014).

5  | CONCLUSIONS

Predictions of species distributions and future suitable areas under 
climate change scenarios have improved by incorporating specific 
biotic interactions (Araújo & Luoto, 2007; Freeman & Mason, 2015; 
Li et al., 2015). Avian habitat specialists and species that feed on 
particular plants are expected to respond mostly to changes in the 
distribution of vegetation and the plants they rely on (Kissling et al., 
2007; Koenig & Haydock, 1999; Preston, Rotenberry, Redak, & 
Allen, 2008). Crossbills are specialized granivores adapted to spe-
cific conifer species (Benkman, 1993, 2003), so their distributions 
will be influenced by tree responses to changing climate conditions 
and land use. Spring temperatures, which are strongly linked to the 
phenology of seed dispersal and thus to seed availability (Benkman, 
1987), were also important predictors of the ranges of European 
crossbills and will affect their resources in the future. We hypoth-
esize that cooler and moist spring conditions were especially critical 
in allowing crossbills to specialize on Scots pine. Consistent with 
this, the two crossbill species specialized on Scots pine (i.e., parrot 
and Scottish crossbills) are distributed in areas of unusual climates 

relative to the dominant climates of Europe (Ohlemüller et al., 
2008). Species with relatively small ranges (such as the Scottish 
crossbill) in areas of uncommon climates are expected to be espe-
cially vulnerable to climate change (Ohlemüller et al., 2008). Besides 
the forecasted shifts and reductions in ranges for crossbills, changes 
in climate and land use may pose new threats by modifying move-
ments of crossbills, potentially increasing competition between 
species and their likelihood of hybridization (Summers & Broome, 
2012; Summers et al., 2007) and altering the trophic interactions 
and selection regimes that presumably led to their diversification.
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